Host Resistance to Uromyces appendiculatus in Common Bean Genotypes

菜豆基因型对镰刀菌的抗性

阅读:4
作者:Reda Ibrahim Omara, Said Mohamed Kamel, Sherif Mohamed El-Ganainy, Ramadan Ahmed Arafa, Yasser Sabry Mostafa, Saad Abdulrahman Alamri, Sulaiman A Alrumman, Mohamed Hashem, Mohsen Mohamed Elsharkawy

Abstract

Rust, induced by the fungus Uromyces appendiculatus, is one of the most serious bean diseases. The involved mechanisms in rust resistance were evaluated in 10 common bean genotypes during the 2019/2020 and 2020/2021 growing seasons. The disease parameters such as final rust severity (FRS%), area under the disease progress curve (AUDPC) and disease increase rate (r-value) were lower in the resistant genotypes than in highly susceptible genotypes. Biochemical compounds such as total phenols and the activity of antioxidant enzymes such as catalase, peroxidase and polyphenol oxidase were increased in the resistant genotypes compared to susceptible genotypes. In the resistance genotypes, the levels of oxidative stress markers such as hydrogen peroxide (H2O2) and superoxide (O2•-) increased dramatically after infection. The electrolyte leakage percentage (EL%), was found to be much greater in susceptible genotypes than resistant genotypes. The resistant gene SA14, which was found in genotypes Nebraska and Calypso at 800 bp, had an adequate level of resistance to bean rust with high grain yield potential. After infection, the transcriptions levels of 1,3-D-glucanases and phenylalanine ammonia lyase) were higher in the resistant genotypes than susceptible genotypes. In conclusion, the resistant genotypes successfully displayed desirable agronomic traits and promising expectations in breeding programs for improving management strategies of common bean rust disease. The resistance was mediated by antioxidant enzymes, phenolic compounds, and defense gene expressions, as well as the resistant gene SA14.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。