Straw-Derived Activated Carbon Decorated with Ag3PO4 for Organic Pollutant Removal by a Circular Degradation Mechanism: Adsorption and Photocatalysis

Ag3PO4 修饰的秸秆活性炭通过循环降解机制去除有机污染物:吸附和光催化

阅读:7
作者:Yihang Yue, Lin Han, Bo Ding, Yanxi Yang, Xiaoju Yue, Shifeng Wang, Qingguo Song, Chun Du

Abstract

The escalating problem of water pollution has become an urgent concern, as it significantly undermines people's quality of life and overall public health. The increasing severity of water pollution represents a global challenge, with profound implications for human society. In this study, hydrothermal carbonization coupled with alkaline activation was utilized to repurpose barley straw into activated carbon (AC) as an absorbent. Silver phosphate (Ag3PO4) was synthesized as a potent photocatalyst. Subsequent ultrasound-assisted loading integrated the robust adsorptive capabilities of the AC with the advanced photocatalytic efficiency of silver phosphate, resulting in a superior composite material (AC/Ag3PO4) and implementing a novel "absorption-photocatalysis" active circular degradation strategy to remove hazardous organics in water. Comprehensive characterization assays confirmed the successful synthesis and incorporation of Ag3PO4 onto the AC scaffold. The composite with a Ag3PO4 concentration of 3 wt % exhibited a high methylene blue (MB) removal efficiency of 99.4% within 100 min. The reaction rate of this composite surpassed that of standalone AC by a factor of 2.89. Furthermore, cyclic regeneration studies via adsorption-desorption methodologies revealed the composite's resilience and sustained performance. The MB removal efficiency was maintained at 85.5% over five consecutive cycles, demonstrating the composite's remarkable stability. The integration of adsorptive and photocatalytic functionalities within a single system mitigates potential secondary pollution arising during the AC's desorption phase and enhances the organic contaminant removal efficiency. Moreover, the utilization of this integrated material reduces the quantity of chemicals and energy required for conventional adsorption water treatment techniques, as the material harnesses sunlight or alternative light sources to catalyze contaminant decomposition. This reduces the dependence on chemical treatment agents, contributing to resource conservation and alleviating environmental burdens. This pioneering approach offers a novel paradigm for addressing pollutant challenges in aqueous environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。