Ginsenoside Rg1 Suppresses Pyroptosis via the NF-κB/NLRP3/GSDMD Pathway to Alleviate Chronic Atrophic Gastritis In Vitro and In Vivo

人参皂苷 Rg1 通过 NF-κB/NLRP3/GSDMD 通路抑制细胞焦亡,在体内和体外缓解慢性萎缩性胃炎

阅读:6
作者:Zehua Zhou, Cheng Hu, Bo Cui, Lisha You, Rui An, Kun Liang, Xinhong Wang

Abstract

Chronic atrophic gastritis (CAG) is characterized by the loss of gastric glandular cells, which are replaced by the intestinal-type epithelium and fibrous tissue. Ginsenoside Rg1 (Rg1) is the prevalent ginsenoside in ginseng, with a variety of biological activities, and is usually added to functional foods. As a novel form of programmed cell death (PCD), pyroptosis has received substantial attention in recent years. Despite the numerous beneficial effects, the curative impact of Rg1 on CAG and whether its putative mechanism is partially via inhibiting pyroptosis still remain unknown. To address this gap, we conducted a study to explore the mechanisms underlying the potential anti-CAG effect of Rg1. We constructed a CAG rat model using a multifactor comprehensive method. A cellular model was developed by using 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) combined with Nigericin as a stimulus applied to GES-1 cells. After Rg1 intervention, the levels of inflammatory indicators in the gastric tissue/cell supernatant were reduced. Rg1 relieved oxidative stress via reducing the myeloperoxidase (MPO) and malonaldehyde (MDA) levels in the gastric tissue and increasing the level of superoxide dismutase (SOD). Additionally, Rg1 improved MNNG+Nigericin-induced pyroptosis in the morphology and plasma membrane of the cells. Further research supported novel evidence for Rg1 in the regulation of the NF-κB/NLRP3/GSDMD pathway and the resulting pyroptosis underlying its therapeutic effect. Moreover, by overexpression and knockout of GSDMD in GES-1 cells, our findings suggested that GSDMD might serve as the key target in the effect of Rg1 on suppressing pyroptosis. All of these offer a potential theoretical foundation for applying Rg1 in ameliorating CAG.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。