Conclusion
CA exerted protective effects against alcoholic liver injury by activating the SIRT1/ChREBP and SIRT1/p66shc pathways, which are related to the anti-steatosis, anti-oxidant, and anti-apoptosis effects.
Results
An in vivo rat model was established by feeding rats a liquid diet containing ethanol, and an in vitro model was created by treating HepG2 cells with 100 mM ethanol for 48 h. In the rat model of alcohol-induced liver injury, CA significantly decreased serum aminotransferase, triglyceride and total cholesterol levels. Additionally, CA inhibited oxidative stress, inflammation, and cell death. Interestingly, CA activated SIRT1, which was associated with the downregulation of lipoprotein carbohydrate response element-binding protein (ChREBP) and growth factor adapter protein (p66shc). In HepG2 cells, ethanol-induced cell injury was associated with decreased SIRT1 and increased ChREBP and p66shc protein expression. These changes were reversed by CA but enhanced by a specific SIRT1 inhibitor, EX527. Moreover, the effects of CA on SIRT1, ChREBP, and p66shc were abolished by SIRT1 siRNA or EX527, indicating that CA decreased ChREBP and p66shc expression via SIRT1 activation.
