In vivo regeneration of rat laryngeal cartilage with mesenchymal stem cells derived from human induced pluripotent stem cells via neural crest cells

利用人类诱导性多能干细胞来源的间充质干细胞通过神经嵴细胞在体内再生大鼠喉软骨

阅读:6
作者:Masayoshi Yoshimatsu, Hiroe Ohnishi, Chengzhu Zhao, Yasuyuki Hayashi, Fumihiko Kuwata, Shinji Kaba, Hideaki Okuyama, Yoshitaka Kawai, Nao Hiwatashi, Yo Kishimoto, Tatsunori Sakamoto, Makoto Ikeya, Koichi Omori

Abstract

The laryngotracheal cartilage is a cardinal framework for the maintenance of the airway for breathing, which occasionally requires reconstruction. Because hyaline cartilage has a poor intrinsic regenerative ability, various regenerative approaches have been attempted to regenerate laryngotracheal cartilage. The use of autologous mesenchymal stem cells (MSCs) for cartilage regeneration has been widely investigated. However, long-term culture may limit proliferative capacity. Human-induced pluripotent stem cell-derived MSCs (iMSCs) can circumvent this problem due to their unlimited proliferative capacity. This study aimed to investigate the efficacy of iMSCs in the regeneration of thyroid cartilage in immunodeficient rats. Herein, we induced iMSCs through neural crest cell intermediates. For the relevance to prospective future clinical application, induction was conducted under xeno-free/serum-free conditions. Then, clumps fabricated from an iMSC/extracellular matrix complex (C-iMSC) were transplanted into thyroid cartilage defects in immunodeficient rats. Histological examinations revealed cartilage-like regenerated tissue and human nuclear antigen (HNA)-positive surviving transplanted cells in the regenerated lesion. HNA-positive cells co-expressed SOX9, and type II collagen was identified around HNA-positive cells. These results indicated that the transplanted C-iMSCs promoted thyroid cartilage regeneration and some of the iMSCs differentiated into chondrogenic lineage cells. Induced MSCs may be a promising candidate cell therapy for human laryngotracheal reconstruction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。