Bioreactor development for skeletal muscle hypertrophy and atrophy by manipulating uniaxial cyclic strain: proof of concept

通过操纵单轴循环应变来开发用于骨骼肌肥大和萎缩的生物反应器:概念验证

阅读:10
作者:Khaled Y Kamal, Mariam Atef Othman, Joo-Hyun Kim, John M Lawler

Abstract

Skeletal muscles overcome terrestrial, gravitational loading by producing tensile forces that produce movement through joint rotation. Conversely, the microgravity of spaceflight reduces tensile loads in working skeletal muscles, causing an adaptive muscle atrophy. Unfortunately, the design of stable, physiological bioreactors to model skeletal muscle tensile loading during spaceflight experiments remains challenging. Here, we tested a bioreactor that uses initiation and cessation of cyclic, tensile strain to induce hypertrophy and atrophy, respectively, in murine lineage (C2C12) skeletal muscle myotubes. Uniaxial cyclic stretch of myotubes was conducted using a StrexCell® (STB-1400) stepper motor system (0.75 Hz, 12% strain, 60 min day^-1). Myotube groups were assigned as follows: (a) quiescent over 2- or (b) 5-day (no stretch), (c) experienced 2-days (2dHY) or (d) 5-days (5dHY) of cyclic stretch, or (e) 2-days of cyclic stretch followed by a 3-day cessation of stretch (3dAT). Using ß-sarcoglycan as a sarcolemmal marker, mean myotube diameter increased significantly following 2dAT (51%) and 5dAT (94%) vs. matched controls. The hypertrophic, anabolic markers talin and Akt phosphorylation (Thr308) were elevated with 2dHY but not in 3dAT myotubes. Inflammatory, catabolic markers IL-1ß, IL6, and NF-kappaB p65 subunit were significantly higher in the 3dAT group vs. all other groups. The ratio of phosphorylated FoxO3a/total FoxO3a was significantly lower in 3dAT than in the 2dHY group, consistent with elevated catabolic signaling during unloading. In summary, we demonstrated proof-of-concept for a spaceflight research bioreactor, using uniaxial cyclic stretch to produce myotube hypertrophy with increased tensile loading, and myotube atrophy with subsequent cessation of stretch.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。