Ticagrelor and clopidogrel suppress NF-κB signaling pathway to alleviate LPS-induced dysfunction in vein endothelial cells

替格瑞洛和氯吡格雷抑制 NF-κB 信号通路减轻 LPS 诱导的静脉内皮细胞功能障碍

阅读:5
作者:Zhuyin Jia, Yiwei Huang, Xiaojun Ji, Jiaju Sun, Guosheng Fu

Background

Ticagrelor and clopidogrel, P2Y12 receptor antagonists, can prevent thrombotic events and are used to treat cardiovascular diseases such as acute coronary syndrome and chronic obstructive pulmonary disease, in which inflammation is involved. Moreover, NF-B is the central regulator of inflammation. Thus, we suspected that ticagrelor and clopidogrel are involved in the regulation of the NF-ΚB signaling pathway.

Conclusions

Ticagrelor and clopidogrel alleviate cellular dysfunction through suppressing NF-ΚB signaling pathway.

Methods

After human umbilical vein endothelial cells (HUVECs) were cultured with ticagrelor or clopidogrel and given lipopolysaccharide (LPS) and CD14, the mRNA levels of related inflammatory factors, the protein level and subcellular localization of molecules in the NF-ΚB signaling pathway, cell viability, apoptosis and the cell cycle, cell migration, and vascular formation were detected using quantitative polymerase chain reaction (qPCR), western blotting and immunofluorescence assay, CCK-8, flow cytometry, transwell assay, and matrigel, respectively. All data was expressed as the mean ± S.D. The statistical significance of data was assessed by an unpaired two-tailed t-test.

Results

Ticagrelor and clopidogrel can inhibit the degradation of IKBα and phosphorylation of p65, prevent p65 from entering the nucleus, reduce the production of TNFα, IL-1, IL-8, IL-6 and IL-2, and alleviate the decrease in cell viability, cell migration and angiogenesis, the changes of cell cycle and apoptosis induced by LPS. Conclusions: Ticagrelor and clopidogrel alleviate cellular dysfunction through suppressing NF-ΚB signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。