A novel isoform of Homeodomain-interacting protein kinase-2 promotes YAP/TEAD transcriptional activity in NSCLC cells

同源结构域相互作用蛋白激酶 2 的新异构体促进 NSCLC 细胞中的 YAP/TEAD 转录活性

阅读:9
作者:Yuyuan Dai, Hiroyuki Kyoyama, Yi-Lin Yang, Yucheng Wang, Shu Liu, Yinghao Wang, Jian-Hua Mao, Zhidong Xu, Kazutsugu Uematsu, David M Jablons, Liang You

Abstract

Homeodomain-interacting protein kinase-2 (HIPK2) can either promote or inhibit transcription depending on cellular context. In this study, we show that a new HIPK2 isoform increases TEAD reporter activity in NSCLC cells. We detected HIPK2 copy number gain in 5/6 (83.3%) NSCLC cell lines. In NSCLC patients with high HIPK2 mRNA expression in the Human Protein Atlas, the five-year survival rate is significantly lower than in patients with low expression (38% vs 47%; p = 0.047). We also found that 70/78 (89.7%) of NSCLC tissues have moderate to strong expression of the N-terminal HIPK2 protein. We detected and cloned a novel HIPK2 isoform 3 and found that its forced overexpression promotes TEAD reporter activity in NSCLC cells. Expressing HIPK2 isoform 3_K228A kinase-dead plasmid failed to increase TEAD reporter activity in NSCLC cells. Next, we showed that two siRNAs targeting HIPK2 decreased HIPK2 isoform 3 and YAP protein levels in NSCLC cells. Degradation of the YAP protein was accelerated after HIPK2 knockdown in NSCLC cells. Inhibition of HIPK2 isoform 3 decreased the mRNA expression of YAP downstream gene CTGF. The specific HIPK2 kinase inhibitor TBID decreased TEAD reporter activity, reduced cancer side populations, and inhibited tumorsphere formation of NSCLC cells. In summary, this study indicates that HIPK2 isoform 3, the main HIPK2 isoform expressed in NSCLC, promotes YAP/TEAD transcriptional activity in NSCLC cells. Our results suggest that HIPK2 isoform 3 may be a potential therapeutic target for NSCLC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。