The O-glycosylated ectodomain of FXYD5 impairs adhesion by disrupting cell-cell trans-dimerization of Na,K-ATPase β1 subunits

FXYD5 的 O-糖基化胞外结构域通过破坏 Na,K-ATPase β1 亚基的细胞间跨二聚化来损害细胞粘附。

阅读:2
作者:Elmira Tokhtaeva ,Haying Sun ,Nimrod Deiss-Yehiely ,Yi Wen ,Pritin N Soni ,Nieves M Gabrielli ,Elizabeth A Marcus ,Karen M Ridge ,George Sachs ,Mónica Vazquez-Levin ,Jacob I Sznajder ,Olga Vagin ,Laura A Dada

Abstract

FXYD5 (also known as dysadherin), a regulatory subunit of the Na,K-ATPase, impairs intercellular adhesion by a poorly understood mechanism. Here, we determined whether FXYD5 disrupts the trans-dimerization of Na,K-ATPase molecules located in neighboring cells. Mutagenesis of the Na,K-ATPase β1 subunit identified four conserved residues, including Y199, that are crucial for the intercellular Na,K-ATPase trans-dimerization and adhesion. Modulation of expression of FXYD5 or of the β1 subunit with intact or mutated β1-β1 binding sites demonstrated that the anti-adhesive effect of FXYD5 depends on the presence of Y199 in the β1 subunit. Immunodetection of the plasma membrane FXYD5 was prevented by the presence of O-glycans. Partial FXYD5 deglycosylation enabled antibody binding and showed that the protein level and the degree of O-glycosylation were greater in cancer than in normal cells. FXYD5-induced impairment of adhesion was abolished by both genetic and pharmacological inhibition of FXYD5 O-glycosylation. Therefore, the extracellular O-glycosylated domain of FXYD5 impairs adhesion by interfering with intercellular β1-β1 interactions, suggesting that the ratio between FXYD5 and α1-β1 heterodimer determines whether the Na,K-ATPase acts as a positive or negative regulator of intercellular adhesion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。