Casticin inhibits nasopharyngeal carcinoma growth by targeting phosphoinositide 3-kinase

紫花苜蓿素通过靶向磷酸肌醇 3-激酶抑制鼻咽癌生长

阅读:5
作者:Jingxian Liu, Jinghong Yang, Yuhe Hou, Zhenwei Zhu, Jie He, Hao Zhao, Xidong Ye, Dengke Li, Zhaohui Wu, Zhongxi Huang, Bingtao Hao, Kaitai Yao

Background

Casticin, an isoflavone compound extracted from the herb Fructus Viticis, has demonstrated anti-inflammatory and anticancer activities and properties. The

Conclusion

Casticin is a newly emerging selective PI3K inhibitor with potential for use as a targeted therapeutic treatment for nasopharyngeal carcinoma. Accordingly, casticin might represent a novel and effective agent against NPC and likely has high potential for combined use with pharmacological agents targeting PI3K/AKT.

Methods

NPC cells were used to perform the experiments. The CCK‑8 assay and colony formation assays were used to assess cell viability. Flow cytometry was used to measure the cell cycle and apoptosis analysis (annexin V/PI assay). A three-dimensional (3D) tumour sphere culture system was used to characterize the effect of casticin on NPC stem cells. In silico molecular docking prediction and high-throughput KINOME scan assays were used to evaluate the binding of casticin to phosphoinositide 3-kinase (PI3K), including wild-type and most of mutants variants. We also used the SelectScreen assay to detect the IC50 of ATP activity in the active site of the target kinase. Western blotting was used to evaluate the changes in key proteins involved cell cycle, apoptosis, stemness, and PI3K/protein kinase B (AKT) signalling. The effect of casticin treatment in vivo was determined by using a xenograft mouse model.

Results

Our results indicate that casticin is a new and novel selective PI3K inhibitor that can significantly inhibit NPC proliferation and that it induces G2/GM arrest and apoptosis by upregulating Bax/BCL2 expression. Moreover, casticin was observed to affect the self-renewal ability of the nasopharyngeal carcinoma cell lines, and a combination of casticin with BYL719 was observed to induce a decrease in the level of the phosphorylation of mTORC1 downstream targets in BYL719-insensitive NPC cell lines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。