Physicochemical Characterization and Evaluation of Gastrointestinal In Vitro Behavior of Alginate-Based Microbeads with Encapsulated Grape Pomace Extracts

包覆葡萄渣提取物的海藻酸盐微珠的物理化学表征及体外胃肠道行为评价

阅读:4
作者:Josipa Martinović, Jasmina Lukinac, Marko Jukić, Rita Ambrus, Mirela Planinić, Gordana Šelo, Ana-Marija Klarić, Gabriela Perković, Ana Bucić-Kojić

Abstract

Grape pomace is a byproduct of wineries and a rich source of phenolic compounds that can exert multiple pharmacological effects when consumed and enter the intestine where they can then be absorbed. Phenolic compounds are susceptible to degradation and interaction with other food constituents during digestion, and encapsulation may be a useful technique for protecting phenolic bioactivity and controlling its release. Therefore, the behavior of phenolic-rich grape pomace extracts encapsulated by the ionic gelation method, using a natural coating (sodium alginate, gum arabic, gelatin, and chitosan), was observed during simulated digestion in vitro. The best encapsulation efficiency (69.27%) was obtained with alginate hydrogels. The physicochemical properties of the microbeads were influenced by the coatings used. Scanning electron microscopy showed that drying had the least effect on the surface area of the chitosan-coated microbeads. A structural analysis showed that the structure of the extract changed from crystalline to amorphous after encapsulation. The phenolic compounds were released from the microbeads by Fickian diffusion, which is best described by the Korsmeyer-Peppas model among the four models tested. The obtained results can be used as a predictive tool for the preparation of microbeads containing natural bioactive compounds that could be useful for the development of food supplements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。