Endoglin regulates the activation and quiescence of endothelium by participating in canonical and non-canonical TGF-β signaling pathways

Endoglin 通过参与经典和非经典 TGF-β 信号通路来调节内皮细胞的激活和静止

阅读:9
作者:Sunyoung Park, Terri A Dimaio, Wei Liu, Shoujian Wang, Christine M Sorenson, Nader Sheibani

Abstract

Endoglin (Eng) is an auxiliary receptor for transforming growth factor-β (TGFβ), with important roles in vascular function. TGFβ regulates angiogenesis through balancing the pro-proliferative and pro-differentiation signaling pathways of endothelial cells (EC). However, the contribution of endoglin to these TGFβ activities, and more specifically modulation of EC phenotype, remains elusive. Mutations in endoglin cause hereditary hemorrhagic telangiectasia-1 in humans. The Eng+/- mice are viable and exhibit some of the vascular defects seen in humans with endoglin haploinsufficiency. In the present study we show that haploinsufficiency of endoglin results in attenuation of retinal neovascularization during oxygen-induced ischemic retinopathy. Although the importance of endoglin expression in angiogenesis and vascular development has been demonstrated, the underlying mechanisms remain obscure. To gain detailed insight into the cell autonomous regulatory mechanisms that affect angiogenic properties of EC, we prepared retinal EC from Eng+/+ and Eng+/- Immorto mice. The Eng+/- EC were more adherent, less migratory, and failed to undergo capillary morphogenesis. Aortic sprouting angiogenesis was similarly attenuated in aortas from Eng+/- mice. In addition, Eng+/- EC expressed increased levels of VEGF but reduced expression of endothelial NO synthase and NO production. Mechanistically, these changes were consistent with sustained activation of mitogen-activated protein kinase (MAPK) pathways, and aberrant Smad-dependent signaling pathways in Eng+/- EC. Taken together, our results underscore the importance of endoglin in both canonical and non-canonical TGFβ signaling pathways modulating both the activation and quiescence of the endothelium during angiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。