ALG-2-interacting Tubby-like protein superfamily member PLSCR3 is secreted by an exosomal pathway and taken up by recipient cultured cells

ALG-2 相互作用的 Tubby 样蛋白超家族成员 PLSCR3 通过外泌体途径分泌并被受体培养细胞吸收

阅读:6
作者:Tatsutoshi Inuzuka, Akira Inokawa, Cen Chen, Kumiko Kizu, Hiroshi Narita, Hideki Shibata, Masatoshi Maki

Abstract

PLSCRs (phospholipid scramblases) are palmitoylated membrane-associating proteins. Regardless of the given names, their physiological functions are not clear and thought to be unrelated to phospholipid scrambling activities observed in vitro. Using a previously established cell line of HEK-293 (human embryonic kidney-293) cells constitutively expressing human Scr3 (PLSCR3) that interacts with ALG-2 (apoptosis-linked gene 2) Ca²⁺-dependently, we found that Scr3 was secreted into the culture medium. Secretion of Scr3 was suppressed by 2-BP (2-bromopalmitate, a palmitoylation inhibitor) and by GW4869 (an inhibitor of ceramide synthesis). Secreted Scr3 was recovered in exosomal fractions by sucrose density gradient centrifugation. Palmitoylation sites and the N-terminal Pro-rich region were necessary for efficient secretion, but ABSs (ALG-2-binding sites) were dispensable. Overexpression of GFP (green fluorescent protein)-fused VPS4B(E235Q), a dominant negative mutant of an AAA (ATPase associated with various cellular activities) ATPase with a defect in disassembling ESCRT (endosomal sorting complex required for transport)-III subunits, significantly reduced secretion of Scr3. Immunofluorescence microscopic analyses showed that Scr3 was largely localized to enlarged endosomes induced by overexpression of a GFP-fused constitutive active mutant of Rab5A (GFP-Rab5A(Q79L)). Secreted Scr3 was taken up by HeLa cells, suggesting that Scr3 functions as a cell-to-cell transferable modulator carried by exosomes in a paracrine manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。