Whole genome sequence of pan drug-resistant clinical isolate of Acinetobacter baumannii ST1890

鲍曼不动杆菌全耐药临床分离株ST1890全基因组序列分析

阅读:5
作者:Thanwa Wongsuk, Siriphan Boonsilp, Anchalee Homkaew, Konrawee Thananon, Worrapoj Oonanant

Abstract

Acinetobacter baumannii is an opportunistic gram-negative bacteria typically attributed to hospital-associated infection. It could also become multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan drug-resistant (PDR) during a short period. Although A. baumannii has been documented extensively, complete knowledge on the antibiotic-resistant mechanisms and virulence factors responsible for pathogenesis has not been entirely elucidated. This study investigated the drug resistance pattern and characterized the genomic sequence by de novo assembly of PDR A. baumannii strain VJR422, which was isolated from a catheter-sputum specimen. The results showed that the VJR422 strain was resistant to any existing antibiotics. Based on de novo assembly, whole-genome sequences showed a total genome size of 3,924,675-bp. In silico and conventional MLST analysis of sequence type (ST) of this strain was new ST by Oxford MLST scheme and designated as ST1890. Moreover, we found 10,915 genes that could be classified into 45 categories by Gene Ontology (GO) analysis. There were 1,687 genes mapped to 34 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The statistics from Clusters of Orthologous Genes (COG) annotation identified 3,189 genes of the VJR422 strain. Regarding the existence of virulence factors, a total of 59 virulence factors were identified in the genome of the VJR422 strain by virulence factors of pathogenic bacteria databases (VFDB). The drug-resistant genes were investigated by searching in the Comprehensive Antibiotic Resistance Database (CARD). The strain harbored antibiotic-resistant genes responsible for aminoglycoside, β-lactam-ring-containing drugs, erythromycin, and streptogramin resistance. We also identified resistance-nodulation-cell division (RND) and the major facilitator superfamily (MFS) associated with the antibiotic efflux pump. Overall, this study focused on A. baumannii strain VJR422 at the genomic level data, i.e., GO, COG, and KEGG. The antibiotic-resistant genotype and phenotype as well as the presence of potential virulence associated factors were investigated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。