Alteration of Mesenchymal Stem Cells Isolated from Glioblastoma Multiforme under the Influence of Photodynamic Treatment

光动力治疗对多形性胶质母细胞瘤分离的间充质干细胞的影响

阅读:5
作者:Kalina Tumangelova-Yuzeir, Krassimir Minkin, Ivan Angelov, Ekaterina Ivanova-Todorova, Ekaterina Kurteva, Georgi Vasilev, Jeliazko Arabadjiev, Petar Karazapryanov, Kaloyan Gabrovski, Lidia Zaharieva, Tsanislava Genova, Dobroslav Kyurkchiev

Abstract

The central hypothesis for the development of glioblastoma multiforme (GBM) postulates that the tumor begins its development by transforming neural stem cells into cancer stem cells (CSC). Recently, it has become clear that another kind of stem cell, the mesenchymal stem cell (MSC), plays a role in the tumor stroma. Mesenchymal stem cells, along with their typical markers, can express neural markers and are capable of neural transdifferentiation. From this perspective, it is hypothesized that MSCs can give rise to CSC. In addition, MSCs suppress the immune cells through direct contact and secretory factors. Photodynamic therapy aims to selectively accumulate a photosensitizer in neoplastic cells, forming reactive oxygen species (ROS) upon irradiation, initiating death pathways. In our experiments, MSCs from 15 glioblastomas (GB-MSC) were isolated and cultured. The cells were treated with 5-ALA and irradiated. Flow cytometry and ELISA were used to detect the marker expression and soluble-factor secretion. The MSCs' neural markers, Nestin, Sox2, and glial fibrillary acid protein (GFAP), were down-regulated, but the expression levels of the mesenchymal markers CD73, CD90, and CD105 were retained. The GB-MSCs also reduced their expression of PD-L1 and increased their secretion of PGE2. Our results give us grounds to speculate that the photodynamic impact on GB-MSCs reduces their capacity for neural transdifferentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。