RADAR: differential analysis of MeRIP-seq data with a random effect model

RADAR:使用随机效应模型对 MeRIP-seq 数据进行差异分析

阅读:6
作者:Zijie Zhang, Qi Zhan, Mark Eckert, Allen Zhu, Agnieszka Chryplewicz, Dario F De Jesus, Decheng Ren, Rohit N Kulkarni, Ernst Lengyel, Chuan He, Mengjie Chen

Abstract

Epitranscriptome profiling using MeRIP-seq is a powerful technique for in vivo functional studies of reversible RNA modifications. We develop RADAR, a comprehensive analytical tool for detecting differentially methylated loci in MeRIP-seq data. RADAR enables accurate identification of altered methylation sites by accommodating variability of pre-immunoprecipitation expression level and post-immunoprecipitation count using different strategies. In addition, it is compatible with complex study design when covariates need to be incorporated in the analysis. Through simulation and real dataset analyses, we show that RADAR leads to more accurate and reproducible differential methylation analysis results than alternatives, which is available at https://github.com/scottzijiezhang/RADAR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。