Glyoxalase I inhibition induces apoptosis in irradiated MCF-7 cells via a novel mechanism involving Hsp27, p53 and NF-κB

乙二醛酶 I 抑制通过涉及 Hsp27、p53 和 NF-κB 的新机制诱导受辐射的 MCF-7 细胞凋亡

阅读:7
作者:C Antognelli, I Palumbo, C Aristei, V N Talesa

Background

Glyoxalase I (GI) is a cellular defence enzyme involved in the detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis, and MG-derived advanced glycation end products (AGEs). Argpyrimidine (AP), one of the major AGEs coming from MG modifications of proteins arginines, is a pro-apoptotic agent. Radiotherapy is an important modality widely used in cancer treatment. Exposure of cells to ionising radiation (IR)

Conclusions

Glyoxalase I is involved in the IR-induced MCF-7 cell mitochondrial apoptotic pathway via a novel mechanism involving Hsp27, p53 and NF-κB.

Methods

Apoptosis, by TUNEL assay, transcript and protein levels or enzymatic activity, by RT-PCR, western blot and spectrophotometric methods, respectively, were evaluated in irradiated MCF-7 breast cancer cells, also in experiments with appropriate inhibitors or using small interfering RNA.

Results

Ionising radiation induced a dramatic reactive oxygen species (ROS)-mediated inhibition of GI, leading to AP-modified Hsp27 protein accumulation that, in a mechanism involving p53 and NF-κB, triggered an apoptotic mitochondrial pathway. Inhibition of GI occurred at both functional and transcriptional levels, the latter occurring via ERK1/2 MAPK and ERα modulation. Conclusions: Glyoxalase I is involved in the IR-induced MCF-7 cell mitochondrial apoptotic pathway via a novel mechanism involving Hsp27, p53 and NF-κB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。