Conclusions
This is the first thyroid-specific model of lenvatinib therapeutic efficacy against pericyte viability, which disadvantages BRAFWT/V600E-PTC growth. Assessing pericyte abundance in patients with PTC could be essential to selection rationales for appropriate targeted therapy with lenvatinib.
Results
Pericyte abundance is significantly higher in BRAFV600E-PTC with hTERT mutations and copy number alterations compared with NT or BRAFWT-PTC samples, even when data are corrected for clinical-pathologic confounders. We have identified upregulated pathways important for tumor survival, immunomodulation, RNA transcription, cell-cycle regulation, and cholesterol metabolism. Pericyte growth is significantly increased by platelet-derived growth factor-BB, which activates phospho(p)-PDGFR-β, pERK1/2, and pAKT. Lenvatinib strongly inhibits pericyte viability by down-regulating MAPK, pAKT, and p-p70S6-kinase downstream PDGFR-β. Critically, lenvatinib significantly induces higher BRAFWT/V600E-PTC cell death when cocultured with pericytes, as a result of pericyte targeting via PDGFR-β. Conclusions: This is the first thyroid-specific model of lenvatinib therapeutic efficacy against pericyte viability, which disadvantages BRAFWT/V600E-PTC growth. Assessing pericyte abundance in patients with PTC could be essential to selection rationales for appropriate targeted therapy with lenvatinib.
