Hippocampal mitophagy contributes to spatial memory via maintaining neurogenesis during the development of mice

海马线粒体自噬通过维持小鼠发育过程中的神经发生促进空间记忆

阅读:4
作者:Le Xu, Saboor Saeed, Xinxu Ma, Xufeng Cen, Yifei Sun, Yanan Tian, Xuhong Zhang, Danhua Zhang, Anying Tang, Hetong Zhou, Jianbo Lai, Hongguang Xia, Shaohua Hu

Background

Impaired mitochondrial dynamics have been identified as a significant contributing factor to reduced neurogenesis under pathological conditions. However, the relationship among mitochondrial dynamics, neurogenesis, and spatial memory during normal development remains unclear. This study aims to elucidate the role of mitophagy in spatial memory mediated by neurogenesis during development.

Conclusion

The observed decline in spatial memory in adult mice is associated with decreased mitophagy, which affects neurogenesis in the dentate gyrus. This underscores the therapeutic potential of enhancing mitophagy to counteract age- or disease-related cognitive decline.

Methods

Adolescent and adult male mice were used to assess spatial memory performance. Immunofluorescence staining was employed to evaluate levels of neurogenesis, and mitochondrial dynamics were assessed through western blotting and transmission electron microscopy. Pharmacological interventions further validated the causal relationship among mitophagy, neurogenesis, and behavioral performance during development.

Results

The study revealed differences in spatial memory between adolescent and adult mice. Diminished neurogenesis, accompanied by reduced mitophagy, was observed in the hippocampus of adult mice compared to adolescent subjects. Pharmacological induction of mitophagy in adult mice with UMI-77 resulted in enhanced neurogenesis and prolonged spatial memory retention. Conversely, inhibition of mitophagy with Mdivi-1 in adolescent mice led to reduced hippocampal neurogenesis and impaired spatial memory.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。