Foam cell specific LXRα ligand

泡沫细胞特异性 LXRα 配体

阅读:6
作者:Radmila Feldmann, Anne Geikowski, Christopher Weidner, Annabell Witzke, Vitam Kodelja, Thomas Schwarz, Mario Gabriel, Thomas Erker, Sascha Sauer

Conclusions

STX4 is a new LXRα-ligand to study transcriptional regulation of anti-atherogenic processes in cell or ex vivo models, and provides a promising lead structure for pharmaceutical development.

Objective

The liver X receptor α (LXRα) is a ligand-dependent nuclear receptor and the major regulator of reverse cholesterol transport in macrophages. This makes it an interesting target for mechanistic study and treatment of atherosclerosis.

Results

We optimized a promising stilbenoid structure (STX4) in order to reach nanomolar effective concentrations in LXRα reporter-gene assays. STX4 displayed the unique property to activate LXRα effectively but not its subtype LXRβ. The potential of STX4 to increase transcriptional activity as an LXRα ligand was tested with gene expression analyses in THP1-derived human macrophages and oxLDL-loaded human foam cells. Only in foam cells but not in macrophage cells STX4 treatment showed athero-protective effects with similar potency as the synthetic LXR ligand T0901317 (T09). Surprisingly, combinatorial treatment with STX4 and T09 resulted in an additive effect on reporter-gene activation and target gene expression. In physiological tests the cellular content of total and esterified cholesterol was significantly reduced by STX4 without the undesirable increase in triglyceride levels as observed for T09. Conclusions: STX4 is a new LXRα-ligand to study transcriptional regulation of anti-atherogenic processes in cell or ex vivo models, and provides a promising lead structure for pharmaceutical development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。