DNA damaging agent-induced apoptosis is regulated by MCL-1 phosphorylation and degradation mediated by the Noxa/MCL-1/CDK2 complex

DNA 损伤剂诱导的细胞凋亡受 Noxa/MCL-1/CDK2 复合物介导的 MCL-1 磷酸化和降解调控

阅读:8
作者:Wataru Nakajima, Kanika Sharma, June Young Lee, Nicolas T Maxim, Mark A Hicks, Thien-Trang Vu, Angela Luu, W Andrew Yeudall, Nobuyuki Tanaka, Hisashi Harada

Abstract

Noxa, a BH3-only pro-apoptotic BCL-2 family protein, causes apoptosis by specifically interacting with the anti-apoptotic protein MCL-1 to induce its proteasome-mediated degradation. We show here that the DNA damaging agents cisplatin and etoposide upregulate Noxa expression, which is required for the phosphorylation of MCL-1 at Ser64/Thr70 sites, proteasome-dependent degradation, and apoptosis. Noxa-induced MCL-1 phosphorylation at these sites occurs at the mitochondria and is primarily regulated by CDK2. MCL-1 and CDK2 form a stable complex and Noxa binds to this complex to facilitate the phosphorylation of MCL-1. When Ser64 and Thr70 of MCL-1 are substituted with alanine, the mutated MCL-1 is neither phosphorylated nor ubiquitinated, and becomes more stable than the wild-type protein. As a consequence, this mutant can inhibit apoptosis induced by Noxa overexpression or cisplatin treatment. These results indicate that Noxa-mediated MCL-1 phosphorylation followed by MCL-1 degradation is critical for apoptosis induced by DNA damaging agents through regulation of the Noxa/MCL-1/CDK2 complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。