The selective butyrylcholinesterase inhibitor UW-MD-95 shows symptomatic and neuroprotective effects in a pharmacological mouse model of Alzheimer's disease

选择性丁酰胆碱酯酶抑制剂 UW-MD-95 在阿尔茨海默病的药理小鼠模型中表现出对症和神经保护作用

阅读:6
作者:Allison Carles, Matthias Hoffmann, Matthias Scheiner, Lucie Crouzier, Christelle Bertrand-Gaday, Arnaud Chatonnet, Michael Decker, Tangui Maurice

Aims

Alzheimer's disease (AD) is a devastating dementia characterized by extracellular amyloid-β (Aβ) protein aggregates and intracellular tau protein deposition. Clinically available drugs mainly target acetylcholinesterase (AChE) and indirectly sustain cholinergic neuronal tonus. Butyrylcholinesterase (BChE) also controls acetylcholine (ACh) turnover and is involved in the formation of Aß aggregates and senile plaques. UW-MD-95 is a novel carbamate-based compound acting as a potent pseudo-irreversible BChE inhibitor, with high selectivity versus AChE, and showing promising protective potentials in AD.

Conclusion

UW-MD-95 appeared as a potent neuroprotective compound in the Aβ25-35 model of AD, with potentially an impact on Aβ1-42 accumulation that could suggest a novel mechanism of neuroprotection.

Methods

We characterized the neuroprotective activity of UW-MD-95 in mice treated intracerebroventricularly with oligomerized Aβ25-35 peptide using behavioral, biochemical, and immunohistochemical approaches.

Results

When injected acutely 30 min before the behavioral tests (spontaneous alternation in the Y-maze, object recognition, or passive avoidance), UW-MD-95 (0.3-3 mg/kg) showed anti-amnesic effects in Aβ25-35-treated mice. When injected once a day over 7 days, it prevented Aβ25-35-induced memory deficits. This effect was lost in BChE knockout mice. Moreover, the compound prevented Aβ25-35-induced oxidative stress (assessed by lipid peroxidation or cytochrome c release), neuroinflammation (IL-6 and TNFα levels or GFAP and IBA1 immunoreactivity) in the hippocampus and cortex, and apoptosis (Bax level). Moreover, UW-MD-95 significantly reduced the increase in soluble Aβ1-42 level in the hippocampus induced by Aβ25-35.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。