The role of type V collagen fibril as an ECM that induces the motility of glomerular endothelial cells

型胶原纤维作为 ECM 诱导肾小球内皮细胞运动的作用

阅读:8
作者:Yusuke Murasawa, Toshihiko Hayashi, Pi-Chao Wang

Abstract

Although type V collagen (Col V) is present in developing and mature connective tissues of glomeruli, its primary function has not been elucidated yet. The purpose of this study was to elucidate the role of Col V fibrils in glomerular cells. We isolated primary cells from porcine kidney and cultured them on Col V fibrils reconstructed from purified Col V molecules extracted from porcine cornea. Time-lapse observation showed that Col V fibrils induce dynamic movement of glomerular endothelial cells (GEC) by stimulating them to extend long filopodial protrusions and wide lamellipodia. Col V signaling mediated through beta1 integrin activated phosphorylation of paxillin at tyrosine 118 (paxillin-pY118) and of focal adhesion kinase at tyrosine 861 (FAKpY861) at the cell periphery; a second Col V signal was mediated through neuroglycan 2 and activated FAKpY397. FAKpY861 was present in loose attachment points between Col V fibrils and GEC, allowing the cells to migrate easily. Activation of FAKpY397 induced incomplete focal adhesion at the centers of cells and caused cell movement. Therefore both signaling pathways facilitated cell motility, which was inhibited by the addition of antibodies to beta1 integrin, NG2, and Col V. We suggest that Col V fibrils activate 'outside-in' signaling in GEC and induce their dynamic motility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。