PDGFR-β signaling mediates HMGB1 release in mechanically stressed vascular smooth muscle cells

PDGFR-β 信号介导机械应激血管平滑肌细胞中的 HMGB1 释放

阅读:5
作者:Ji On Kim, Seung Eun Baek, Eun Yeong Jeon, Jong Min Choi, Eun Jeong Jang, Chi Dae Kim

Abstract

Mechanically stressed vascular smooth muscle cells (VSMCs) have potential roles in the development of vascular complications. However, the underlying mechanisms are unclear. Using VSMCs cultured from rat thoracic aorta explants, we investigated the effects of mechanical stretch (MS) on the cellular secretion of high mobility group box 1 (HMGB1), a major damage-associated molecular pattern that mediates vascular complications in stressed vasculature. Enzyme-linked immunosorbent assay (ELISA) demonstrated an increase in the secretion of HMGB1 in VSMCs stimulated with MS (0-3% strain, 60 cycles/min), and this secretion was markedly and time-dependently increased at 3% MS. The increased secretion of HMGB1 at 3% MS was accompanied by an increased cytosolic translocation of nuclear HMGB1; the acetylated and phosphorylated forms of this protein were significantly increased. Among various inhibitors of membrane receptors mediating mechanical signals, AG1295 (a platelet-derived growth factor receptor (PDGFR) inhibitor) attenuated MS-induced HMGB1 secretion. Inhibitors of other receptors, including epidermal growth factor, insulin-like growth factor, and fibroblast growth factor receptors, did not inhibit this secretion. Additionally, MS-induced HMGB1 secretion was markedly attenuated in PDGFR-β-deficient cells but not in cells transfected with PDGFR-α siRNA. Likewise, PDGF-DD, but not PDGF-AA, directly increased HMGB1 secretion in VSMCs, indicating a pivotal role of PDGFR-β signaling in the secretion of this protein in VSMCs. Thus, targeting PDGFR-β-mediated secretion of HMGB1 in VSMCs might be a promising therapeutic strategy for vascular complications associated with hypertension.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。