In silico prediction of targets for anti-angiogenesis and their in vitro evaluation confirm the involvement of SOD3 in angiogenesis

抗血管生成靶点的计算机预测及其体外评估证实了 SOD3 参与血管生成

阅读:4
作者:Javier A García-Vilas, Ian Morilla, Anibal Bueno, Beatriz Martínez-Poveda, Miguel Ángel Medina, Juan A G Ranea

Abstract

Biocomputational network approaches are being successfully applied to predict and extract previously unknown information of novel molecular components of biological systems. In the present work, we have used this approach to predict new potential targets of anti-angiogenic therapies. For experimental validation of predictions, we made use of two in vitro assays related to two key steps of the angiogenic process, namely, endothelial cell migration and formation of "tubular-like" structures on Matrigel. From 7 predicted candidates, experimental tests clearly show that superoxide dismutase 3 silencing or blocking with specific antibodies inhibit both key steps of angiogenesis. This experimental validation was further confirmed with additional in vitro assays showing that superoxide dismutase 3 blocking produces inhibitory effects on the capacity of endothelial cells to form "tubular-like" structure within type I collagen matrix, to adhere to elastin-coated plates and to invade a Matrigel layer. Furthermore, angiogenesis was also inhibited in the en vivo aortic ring assay and in the in vivo mouse Matrigel plug assay. Therefore, superoxide dismutase 3 is confirmed as a putative target for anti-angiogenic therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。