Long-Term High Fat Diet Has a Profound Effect on Body Weight, Hormone Levels, and Estrous Cycle in Mice

长期高脂饮食对小鼠体重、激素水平和发情周期有显著影响

阅读:8
作者:Tandra R Chakraborty, Laxminarasimha Donthireddy, Debasis Adhikary, Sanjoy Chakraborty

Abstract

BACKGROUND Obesity causes several health complications along with disruption of the reproductive system. The aim of the current study was to determine how long-term intake of very high fat diet (VHFD) changes the hormonal milieu, affecting the cellular morphology and reproductive cycle in female mice. MATERIAL AND METHODS Mice were fed on normal diet (ND) and VHFD for 2 weeks, 12 weeks, and 25-27 weeks. We assessed changes in body weight, food consumption, energy intake, cellular and tissue morphology, hormonal levels (leptin, insulin, and estradiol), and vaginal smears were performed at various time points to determine the length and cellularity at each stage of the estrous cycle. RESULTS Mice fed on VHFD showed a significant increase in weight gain, reduction in food intake, and increase in energy intake compared to animals fed on ND, indicating that the caloric density of the diet is responsible for the differences in weight gain. Hormonal analysis showed hyperleptinemia, hyperinsulinemia, and increases in estrogen levels, along with increases in size of the islet of Langerhans and adipocytes. After 25-27 weeks, all animals fed on VHFD showed complete acyclicity; elongation of phases (e.g., diestrous), skipping of phases (e.g., metestrous), or a combination of both, indicating disruption in the reproductive cycle. Quantitative analysis showed that in the diestrous phase there was a 70% increase in cell count in VHFD compared to animals fed on ND. CONCLUSIONS The above results show that morphological and hormonal changes caused by VHFD probably act via negative feedback to the hypothalamic-pituitary axis to shut down reproduction, which has a direct effect on the estrous cycle, causing acyclicity in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。