Predominant cellular mitochondrial dysfunction in the TOP3A gene-caused Bloom syndrome-like disorder

TOP3A 基因引起的布卢姆综合征样疾病中主要存在细胞线粒体功能障碍

阅读:7
作者:Wenjun Jiang, Nan Jia, Chaowan Guo, Juan Wen, Lingqian Wu, Tomoo Ogi, Huiwen Zhang

Abstract

TOP3A promotes processing of double Holliday junction dissolution and also plays an important role in decatenation and segregation of human mtDNA. Recently, TOP3A mutations have been reported to cause Bloom syndrome-like disorder. However, whether the two function play equal roles in the disease pathogenesis is unclear. We retrospectively studied the disease progression of two siblings with Bloom-like syndrome caused by two novel mutations of TOP3A, p.Q788* and p.D479G. Beside the common clinical manifestations, our patients exhibited liver lipid storage with hepatomegaly. In cellular and molecular biological studies, TOP3A deficiency moderately increased sister chromatid exchanges and decreased cell proliferation compared with BLM or RMI2 deficiency. These changes were rescued by ectopic expression of either of the wildtype TOP3A or TOP3A-D479G. In contrast, reduced mitochondrial ATP generation and oxygen consumption rates observed in TOP3A defective cells were rescued by over-expression of the wildtype TOP3A, but not TOP3A-D479G. Considering the different impact of the TOP3A-D479G mutation on the genome stability and mitochondrial metabolism, we propose that the impaired mitochondrial metabolism plays an important role in the pathogenesis of TOP3A-deficient Bloom-like disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。