Epigenetic regulation of IFITM1 expression in lipopolysaccharide-stimulated human mesenchymal stromal cells

脂多糖刺激的人间充质基质细胞中 IFITM1 表达的表观遗传调控

阅读:7
作者:Sun Hwa Kim, Hae In Choi, Mi Ran Choi, Ga Yeong An, Bert Binas, Kyoung Hwa Jung, Young Gyu Chai

Background

Toll-like receptor 4 (TLR4) ligands such as lipopolysaccharide (LPS) activate immunomodulatory functions and the migration of human mesenchymal stromal cells (hMSCs). Here, we study the migration-related gene expression of LPS-stimulated hMSCs and the role and regulation of one of the upregulated genes, encoding the interferon-induced transmembrane protein 1 (IFITM1).

Conclusions

Increased expression of the IFITM1 gene is required for LPS-stimulated hMSC migration. We described several underlying changes in the IFITM1 gene enhancer, most notably the NF-κB-mediated activation of enhancer region R2.

Methods

Gene expression profiles were determined by whole-transcriptome analysis (RNA-seq) and quantitative real-time PCR (qRT-PCR). Bioinformatics approaches were used to perform network and pathway analyses. The cell migration-related genes were identified with an in vitro wound healing assay. RNA interference (RNAi) was used to suppress the IFITM1 gene expression. The IFITM1 gene enhancer was analyzed by chromatin immunoprecipitation (ChIP) sequencing, ChIP-to-PCR, luciferase reporter assays, and qRT-PCR for enhancer RNAs (eRNAs).

Results

RNA-seq confirmed IFITM1 as an LPS-stimulated gene, and RNAi demonstrated its importance for the LPS-stimulated migration. LPS treatment increased the eRNA expression in enhancer region R2 (2 kb upstream) of the IFITM1 gene and enriched R2 for H3K27ac. Bioinformatics implicated the transcription factors NF-κB and IRF1, ChIP assays revealed their binding to R2, and chemical inhibition of NF-κB and RNAi directed against IRF1 prevented R2 eRNA and IFITM1 gene expression. Conclusions: Increased expression of the IFITM1 gene is required for LPS-stimulated hMSC migration. We described several underlying changes in the IFITM1 gene enhancer, most notably the NF-κB-mediated activation of enhancer region R2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。