Innate signaling within the central nervous system recruits protective neutrophils

中枢神经系统内的先天信号募集保护性中性粒细胞

阅读:3
作者:Reza Khorooshi, Joanna Marczynska, Ruthe Storgaard Dieu, Vian Wais, Christian Rønn Hansen, Stephanie Kavan, Mads Thomassen, Mark Burton, Torben Kruse, Gill A Webster, Trevor Owens

Abstract

There is great interest in understanding how the central nervous system (CNS) communicates with the immune system for recruitment of protective responses. Infiltrating phagocytic monocytes and granulocytes are implicated in neuroinflammation in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). To investigate how CNS endogenous signals can be harnessed to promote anti-inflammatory programs, we have used a particulate Toll-like receptor 9 and nucleotide-oligomerization domain 2 bispecific innate ligand (MIS416), to address whether its phagocytosis within the CNS recruits protective myeloid cells. We find that MIS416 injected intrathecally into the cerebrospinal fluid via the cisterna magna induced a local chemokine response that recruited blood-derived monocytes and neutrophils to the CNS. These cells phagocytosed MIS416. The increase in EAE severity normally seen from time of onset did not occur in mice receiving MIS416. This suppression of disease symptoms was dependent on expression of the type I interferon receptor (IFNAR). Transfer of intrathecal MIS416-induced neutrophils suppressed EAE in recipient mice, while monocytes did not transfer protection. MIS416-induced neutrophils showed increased IL-10 expression that was IFNAR1-driven. In contrast to intrathecal administration, intravenous administration of MIS416 led to monocyte but not neutrophil infiltration to the CNS. We thus identify a CNS-intrinsic and -specific phagocytosis-induced recruitment of anti-inflammatory neutrophils that contribute to CNS homeostasis and may have therapeutic potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。