EphrinB/EphB Signaling Contributes to the Synaptic Plasticity of Chronic Migraine Through NR2B Phosphorylation

EphrinB/EphB 信号通过 NR2B 磷酸化促进慢性偏头痛的突触可塑性

阅读:13
作者:Jiang Wang, Zhaoyang Fei, Jie Liang, Xue Zhou, Guangcheng Qin, Dunke Zhang, Jiying Zhou, Lixue Chen

Abstract

The specific mechanism of migraine chronification remains unclear. We previously demonstrated that synaptic plasticity was associated with migraine chronification. EphB receptors and their ligands, ephrinBs, are considered to be key molecules regulating the synaptic plasticity of the central nervous system. However, whether they can promote the chronification of migraine by regulating synaptic plasticity is unknown. Therefore, we investigated the role of ephrinB/EphB signaling in chronic migraine (CM). Male Sprague-Dawley rats were used to construct a chronic migraine model by dural infusion of an inflammatory soup for 7 days. We used qPCR, western blot, and immunofluorescence to detect the mRNA and protein levels of EphB2 and ephrinB2. The paw withdrawal latency and paw withdrawal threshold were measured after lateral ventricle treatment with EphB1-Fc (an inhibitor of EphB receptor). Changes in synaptic plasticity were explored by examining synaptic-associated proteins by western blot, dendritic spines of neurons by Golgi-Cox staining, and synaptic ultrastructure by transmission electron microscopy. We found that the expression of EphB2 and ephrinB2 increased in CM. The administration of EphB1-Fc relieved hyperalgesia and changes in synaptic plasticity induced by CM. In addition, EphB1-Fc inhibited the upregulation of NR2B phosphorylation. These results indicate that ephrinB/EphB signaling may regulate synaptic plasticity in CM via NR2B phosphorylation, which suggests the novel idea that ephrinB/EphB signaling may be a target for the treatment of migraine chronification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。