The role of 3-ketosteroid 1(2)-dehydrogenase in the pathogenicity of Mycobacterium tuberculosis

3-酮类固醇1(2)-脱氢酶在结核分枝杆菌致病性中的作用

阅读:6
作者:Marta Brzezinska, Izabela Szulc, Anna Brzostek, Magdalena Klink, Michal Kielbik, Zofia Sulowska, Jakub Pawelczyk, Jaroslaw Dziadek

Background

A growing body of evidence suggests that Mycobacterium tuberculosis (Mtb) uses the host's cholesterol as a source of carbon and energy during infection. Strains defective in cholesterol transport or degradation exhibit attenuated growth in activated macrophages and diminished infectivity in animal models. The

Conclusions

The Mtb mutant ∆kstD strain, which is unable to use cholesterol as a source of carbon and energy, has a limited ability to multiply in resting MØ following infection, reflecting a failure of the ∆kstD strain to inhibit the TLR2-dependent bactericidal activity of resting MØ.

Results

A mutant Mtb H37Rv strain containing an inactivated kstD gene (∆kstD), which encodes 3-ketosteroid 1(2)-dehydrogenase (KstD), was previously prepared using the homologous recombination-based gene-replacement technique. A control strain carrying the kstD gene complemented with an intact kstD was also previously constructed. In this study, human resting MØ were obtained after overnight differentiation of the human monocyte-macrophage cell line THP-1. Resting MØ were further activated with interferon-γ (IFN-γ). The ability of the kstD-defective Mtb mutant strain to replicate intracellularly in human MØ was evaluated using a colony-forming assay. Nitric oxide (NO) and reactive oxygen species (ROS) production by MØ infected with wild-type or ∆kstD strains was detected using Griess reagent and chemiluminescence methods, respectively. The production of tumor necrosis factor-α and interleukin-10 by MØ after infection with wild-type or mutant Mtb was examined using enzyme-linked immunosorbent assays.We found that replication of mutant Mtb was attenuated in resting MØ compared to the wild-type or complemented strains. Moreover, the mutant was unable to inhibit the NO and ROS production induced through Toll-like receptor 2 (TLR2) signaling in infected resting MØ. In contrast, mutant and wild-type Mtb behaved similarly in MØ activated with IFN-γ before and during infection. Conclusions: The Mtb mutant ∆kstD strain, which is unable to use cholesterol as a source of carbon and energy, has a limited ability to multiply in resting MØ following infection, reflecting a failure of the ∆kstD strain to inhibit the TLR2-dependent bactericidal activity of resting MØ.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。