Optimization and scale-up production of Zika virus ΔNS1 in Escherichia coli: application of Response Surface Methodology

大肠杆菌中寨卡病毒 ΔNS1 的优化和扩大生产:响应面法的应用

阅读:6
作者:Alex Issamu Kanno, Luciana Cezar de Cerqueira Leite, Lennon Ramos Pereira, Mônica Josiane Rodrigues de Jesus, Robert Andreata-Santos, Rúbens Prince Dos Santos Alves, Edison Luiz Durigon, Luís Carlos de Souza Ferreira, Viviane Maimoni Gonçalves

Abstract

Diagnosing Zika virus (ZIKV) infections has been challenging due to the cross-reactivity of induced antibodies with other flavivirus. The concomitant occurrence of ZIKV and Dengue virus (DENV) in endemic regions requires diagnostic tools with the ability to distinguish these two viral infections. Recent studies demonstrated that immunoassays using the C-terminal fragment of ZIKV NS1 antigen (ΔNS1) can be used to discriminate ZIKV from DENV infections. In order to be used in serological tests, the expression/solubility of ΔNS1 and growth of recombinant E. coli strain were optimized by Response Surface Methodology. Temperature, time and IPTG concentration were evaluated. According to the model, the best condition determined in small scale cultures was 21 °C for 20 h with 0.7 mM of IPTG, which predicted 7.5 g/L of biomass and 962 mg/L of ΔNS1. These conditions were validated and used in a 6-L batch in the bioreactor, which produced 6.4 g/L of biomass and 500 mg/L of ΔNS1 in 12 h of induction. The serological ELISA test performed with purified ΔNS1 showed low cross-reactivity with antibodies from DENV-infected human subjects. Denaturation of ΔNS1 decreased the detection of anti-ZIKV antibodies, thus indicating the contribution of conformational epitopes and confirming the importance of properly folded ΔNS1 for the specificity of the serological analyses. Obtaining high yields of soluble ΔNS1 supports the viability of an effective serologic diagnostic test capable of differentiating ZIKV from other flavivirus infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。