A novel algorithm to differentiate between primary lung tumors and distant liver metastasis in lung cancers using an exosome based multi gene biomarker panel

一种使用基于外泌体的多基因生物标志物组区分肺癌原发性肺肿瘤和远处肝转移的新算法

阅读:3
作者:Kanisha A Shah, Rakesh M Rawal

Abstract

The lack of non-invasive methods for detection of early metastasis is a crucial reason for the poor prognosis of lung cancer (LC) liver metastasis (LM) patients. In this study, the goal was to identify circulating biomarkers based on a biomarker model for the early diagnosis and monitoring of patients with LCLM. An 8-gene panel identified in our previous study was validated in CTC, cfRNA and exosomes isolated from primary lung cancer with & without metastasis. Further multivariate analysis including PCA & ROC was performed to determine the sensitivity and specificity of the biomarker panel. Model validation cohort (n = 79) was used to verify the stability of the constructed predictive model. Further, clinic-pathological factors, survival analysis and immune infiltration correlations were also performed. In comparison to our previous tissue data, exosomes demonstrated a good discriminative value with an AUC of 0.7247, specificity (72.48%) and sensitivity (96.87%) for the 8-gene panel. Further individual gene patterns led us to a 5- gene panel that showed an AUC of 0.9488 (p = < 0.001) and 0.9924 (p = < 0.001) respectively for tissue and exosomes. Additionally, on validating the model in a larger cohort a risk score was obtained (RS > 0.2) for prediction of liver metastasis with an accuracy of 95%. Survival analysis and immune filtration markers suggested that four exosomal markers were independently associated with poor overall survival. We report a novel blood-based exosomal biomarker panel for early diagnosis, monitoring of therapeutic response, and prognostic evaluation of patients with LCLM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。