Role of NOM in the Photolysis of Chlorine and the Formation of Reactive Species in the Solar/Chlorine System

NOM 在氯光解和太阳/氯系统中活性物质形成中的作用

阅读:4
作者:Huaxi Zhou, Dongxue Xiao

Abstract

The solar/chlorine system has been proposed as a novel advanced oxidation process (AOP) for efficient pollutant degradation and water disinfection by producing a series of reactive species including hydroxyl radicals (HO•), chlorine radicals (Cl•), and so forth. In this study, the role of natural organic matter (NOM) in the photolysis of free available chlorine (FAC) and the formation of HO• and Cl• in the solar/chlorine system was investigated employing nitrobenzene and benzoic acid as selective chemical probes. The decay rate of FAC was significantly accelerated in the presence of NOM at pH 5.5 under simulated solar irradiation, likely due to the photoreaction between FAC and the photoexcited NOM. The decay rate of FAC increased upon increasing the electron-donating capacity of NOM, which indicated that phenolic components play a significant role in the photodegradation of FAC. This acceleration mechanism was further verified using 4-nitrophenol as a model phenolic compound. NOM promoted Cl• formation and quenched HO• in the solar/chlorine system. The proposed reaction mechanism included the reaction of excited singlet phenolic compounds in NOM with FAC, which yielded Cl•. This study provides a useful insight into future applications for using the solar/chlorine system as a novel AOP for wastewater treatment or disinfection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。