Aim of the study
Postoperative peritoneal adhesions are a common cause of morbidity after surgery, resulting in multiple complications. Macrophage-mediated inflammation and myofibroblast differentiation after tissue injury play central roles in the pathogenesis and progression of adhesion formation. Calponin 2 is an actin cytoskeleton regulatory protein in endothelial cells, macrophages and fibroblasts that are key players in the development of fibrosis. Deletion of calponin 2 has been shown to attenuate inflammatory arthritis, atherosclerosis and fibrocalcification of the aortic valves. The present study investigated the effect of calponin 2 deletion on attenuating the formation of peritoneal adhesions in a mouse model for potential use as a new therapeutic target.Materials and
Conclusions
The data show that deletion of calponin 2 effectively reduces postoperative peritoneal adhesion, presenting a novel molecular target for clinical prevention.
Methods
Sterile surgical procedures under general anesthesia were used on paired wild type (WT) and calponin 2 knockout (KO) mice to generate mild injury on the cecal and abdominal wall peritonea. Three and seven days post-operation, the mice were compared postmortem for the formation of peritoneal adhesions. Tissues at the adhesion sites were examined with histology and immunofluorescent studies for macrophage and myofibroblast activations.
Results
Quantitative scoring demonstrated that calponin 2 KO mice developed significantly less postoperative peritoneal adhesions than that in WT mice. Calponin 2 deletion resulted in less infiltration of F4/80+ macrophages at the adhesion sites with less myofibroblast differentiation and collagen deposition than WT controls.Conclusions: The data show that deletion of calponin 2 effectively reduces postoperative peritoneal adhesion, presenting a novel molecular target for clinical prevention.
