Multi-arm RNA junctions encoding molecular logic unconstrained by input sequence for versatile cell-free diagnostics

多臂 RNA 连接体编码不受输入序列限制的分子逻辑,可用于多种无细胞诊断

阅读:4
作者:Duo Ma, Yuexin Li, Kaiyue Wu, Zhaoqing Yan, Anli A Tang, Soma Chaudhary, Zachary M Ticktin, Jonathan Alcantar-Fernandez, José L Moreno-Camacho, Abraham Campos-Romero, Alexander A Green

Abstract

Applications of RNA-based molecular logic have been hampered by sequence constraints imposed on the input and output of the circuits. Here we show that the sequence constraints can be substantially reduced by appropriately encoded multi-arm junctions of single-stranded RNA structures. To conditionally activate RNA translation, we integrated multi-arm junctions, self-assembled upstream of a regulated gene and designed to unfold sequentially in response to different RNA inputs, with motifs of loop-initiated RNA activators that function independently of the sequence of the input RNAs and that reduce interference with the output gene. We used the integrated RNA system and sequence-independent input RNAs to execute two-input and three-input OR and AND logic in Escherichia coli, and designed paper-based cell-free colourimetric assays that accurately identified two human immunodeficiency virus (HIV) subtypes (by executing OR logic) in amplified synthetic HIV RNA as well as severe acute respiratory syndrome coronavirus-2 (via two-input AND logic) in amplified RNA from saliva samples. The sequence-independent molecular logic enabled by the integration of multi-arm junction RNAs with motifs for loop-initiated RNA activators may be broadly applicable in biotechnology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。