Comprehensive proteomic profiling of lung adenocarcinoma: development and validation of an innovative prognostic model

肺腺癌的综合蛋白质组学分析:创新预后模型的开发和验证

阅读:5
作者:Xiaofei Yu, Lei Zheng, Zehai Xia, Yanling Xu, Xihui Shen, Yihui Huang, Yifan Dai

Background

Lung adenocarcinoma (LUAD), a global leading cause of cancer deaths, remains inadequately addressed by current protein biomarkers. Our study focuses on developing a protein-based risk signature for improved prognosis of LUAD.

Conclusions

This study presented a novel prognostic protein model for LUAD, highlighting the CD38 expression paradox and enhancing our understanding of protein roles in lung cancer progression. It offered new clinical tools for prognosis prediction and provided assistance for future lung cancer pathogenesis research.

Methods

We employed the least absolute shrinkage and selection operator (LASSO)-COX algorithm on The Cancer Genome Atlas database to construct a prognostic model incorporating six proteins (CD49B, UQCRC2, SMAD1, FOXM1, CD38, and KAP1). The model's performance was assessed using principal component, Kaplan-Meier (KM), and receiver operating characteristic (ROC) analysis, indicating strong predictive capability. The model stratifies LUAD patients into distinct risk groups, with further analysis revealing its potential as an independent prognostic factor. Additionally, we developed a predictive nomogram integrating clinicopathologic factors, aimed at assisting clinicians in survival prediction. Gene set enrichment analysis (GSEA) and examination of the tumor immune microenvironment were conducted, highlighting metabolic pathways in high-risk genes and immune-related pathways in low-risk genes, indicating varied immunotherapy sensitivity. Validation through immunohistochemistry from the Human Protein Atlas (HPA) database and immunofluorescence staining of clinical samples was performed, particularly focusing on CD38 expression.

Results

Our six-protein model (CD49B, UQCRC2, SMAD1, FOXM1, CD38, KAP1) effectively categorized LUAD patients into high and low-risk groups, confirmed by principal component, KM, and ROC analyses. The model showed high predictive accuracy, with distinct survival differences between risk groups. Notably, CD38, traditionally seen as protective, was paradoxically associated with poor prognosis in LUAD, a finding supported by immunohistochemistry and immunofluorescence data. GSEA revealed that high-risk genes are enriched in metabolic pathways, while low-risk genes align with immune-related pathways, suggesting better immunotherapy response in the latter group. Conclusions: This study presented a novel prognostic protein model for LUAD, highlighting the CD38 expression paradox and enhancing our understanding of protein roles in lung cancer progression. It offered new clinical tools for prognosis prediction and provided assistance for future lung cancer pathogenesis research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。