Electrochemical Degradation of Molecularly Imprinted Polymers for Future Applications of Inflammation Sensing in Cochlear Implants

分子印迹聚合物的电化学降解及其在人工耳蜗炎症传感中的应用

阅读:6
作者:Minh-Hai Nguyen, Adrian Onken, Jan Sündermann, Madina Shamsuyeva, Pankaj Singla, Tom Depuydt, Marloes Peeters, Patrick Wagner, Konrad Bethmann, Julia Körner, Hans-Josef Endres, Thomas Lenarz, Theodor Doll

Abstract

After cochlear implant (CI) insertion, there is a possibility of postoperative inflammation, which may involve proinflammatory markers such as interleukin-6. Detecting this inflammation promptly is crucial for administering anti-inflammatory drugs, if required. One potential method for detecting inflammation is using molecular imprinted polymers (MIPs). These MIPs, which can be deposited on the CI electrode, provide readout employing impedance measurements, a feature already available on the CI circuit. MIPs designed for this purpose should possess biocompatibility, conductivity, and degradability. The degradability is crucial because there is a limitation on the number of electrodes available, and once the inflammation sensor degrades after the acute inflammation period, it should remain usable as a regular electrode. In this work, conductive poly(3,4-ethylenedioxythiophene) polystyrenesulfonate-based MIPs were synthesized against biotin as a surrogate target marker. Specific biotin binding with MIPs was determined before and after degradation using electrochemical impedance spectroscopy (EIS) and compared with the control nonimprinted polymers (NIPs). Subsequently, MIPs were electrochemically degraded by EIS with different potentials, wherein a potential dependence was observed. With decreasing potential, fewer dissolved polymers and more monomer molecules were detected in the solution in which degradation took place. At a potential of 0.205 V a negligible amount of dissolved polymer in addition to the dissolved monomer molecules was measured, which can be defined as the limiting potential. Below this potential, only dissolved monomer molecules are obtained, which enables renal clearance. Biocompatibility testing revealed that both the polymer and the solution with dissolved monomer molecules do not exceed the ISO 10993-5 cytotoxicity threshold. Based on these findings, we have developed conductive, biocompatible, and controllably degradable MIPs capable of detecting biotin. This research work paves the way for the advancement of CIs, where inflammation can be detected using molecular imprinting technology without compromising the stability and biosafety of the product.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。