Aquaporin-4 expression in post-traumatic syringomyelia

创伤后脊髓空洞症中的水通道蛋白-4表达

阅读:6
作者:Sarah J Hemley, Lynne E Bilston, Shaokoon Cheng, Jing Ning Chan, Marcus A Stoodley

Abstract

Aquaporin-4 (AQP4) is an astroglial water channel protein that plays an important role in the transmembrane movement of water within the central nervous system. AQP4 has been implicated in numerous pathological conditions involving abnormal fluid accumulation, including spinal cord edema following traumatic injury. AQP4 has not been studied in post-traumatic syringomyelia, a condition that cannot be completely explained by current theories of cerebrospinal fluid dynamics. Alterations of AQP4 expression or function may contribute to the fluid imbalance leading to syrinx formation or enlargement. The aim of this study was to examine AQP4 expression levels and distribution in an animal model of post-traumatic syringomyelia. Immunofluorescence and western blotting were used to assess AQP4 and glial fibrillary acidic protein (GFAP) expression in an excitotoxic amino acid/arachnoiditis model of post-traumatic syringomyelia in Sprague-Dawley rats. At all time-points, GFAP-positive astrocytes were observed in tissue surrounding syrinx cavities, although western blot analysis demonstrated an overall decrease in GFAP expression, except at the latest stage investigated. AQP4 expression was significantly higher at the level of syrinx at three and six weeks following the initial syrinx induction surgery. Significant increases in AQP4 expression also were observed in the upper cervical cord, rostral to the syrinx except in the acute stage of the condition at the three-day time-point. Immunostaining showed that AQP4 was expressed around all syrinx cavities, most notably adjacent to a mature syrinx (six- and 12-week time-point). This suggests a relationship between AQP4 and fluid accumulation in post-traumatic syringomyelia. However, whether this is a causal relationship or occurs in response to an increase in fluid needs to be established.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。