Pentosan polysulfate ameliorates fibrosis and inflammation markers in SV40 MES13 cells by suppressing activation of PI3K/AKT pathway via miR-446a-3p

戊聚糖多硫酸盐通过 miR-446a-3p 抑制 PI3K/AKT 通路的激活,改善 SV40 MES13 细胞中的纤维化和炎症标志物

阅读:5
作者:Liangxiang Xiao, Anqun Chen, Qing Gao, Bo Xu, Xiaodan Guo, Tianjun Guan

Background

Renal fibrosis is a common outcome of various renal damage, including diabetic nephropathy (DN), the leading cause of end-stage renal disease. Currently, there are no effective therapies for renal fibrosis. The present study aimed to determine whether pentosan polysulphate sodium (PPS), a FDA approved medication for interstitial cystitis, protects diabetic renal fibrosis.

Conclusions

The treatment of PPS protected against AGEs-induced toxicity in SV40 MES13 cells via miR-466a-3p-mediated inhibition of PI3K/AKT pathway.

Methods

Cell viability and apoptosis were evaluated in mouse mesangial cells (SV40-MES13) after incubating with the advanced glycation end products (AGEs), which play important roles in the pathogenesis of DN. Western blot and ELISA were performed to determine the expression of transforming growth factor-beta1 (TGF-β1) and fibronectin (FN), two biomarkers of renal fibrosis, as well as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), two biomarkers of inflammation. The miRNA-mRNA regulatory network involved in the phosphatidylinositol 3-kinase (PI3K)/Ser and Thr Kinase (AKT) signalling was investigated by miRNA deep sequencing and validated by RT-PCR and miRNA transfection.

Results

AGEs significantly inhibited cell proliferation and promoted cell apoptosis, which was associated with the overexpression of TGF-β1, FN, IL-6, and TNFα. PPS almost completely reversed AGEs-induced biomarkers of fibrosis and inflammation, and significantly altered the miRNA expression profile in AGEs-treated cells. Notably, the PI3K/AKT signalling was one of the most significantly enriched pathways targeted by PPS-related differentially expressed miRNAs. PPS significantly up-regulated miR-466a-3p, which was shown to target PIK3CA, and mediated the inhibitory effect of PPS on AGEs-induced activation of PI3K/AKT pathway. Conclusions: The treatment of PPS protected against AGEs-induced toxicity in SV40 MES13 cells via miR-466a-3p-mediated inhibition of PI3K/AKT pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。