Conclusions
18F-FET MicroPET can be used to detect a treatment response to CPT-11 in GBM xenografts. The strong negative correlation between SUV max T/B ratio and LAT1/LAT2 indicates an export transport function. We suggest that 18F-FET PET may be used for detection of early treatment response in patients.
Methods
Human GBM cells were injected orthotopically in nude mice and 18F-FET uptake was followed by weekly MicroPET/CT. When tumor take was observed, mice were treated with CPT-11 or saline weekly. After two weeks of treatment the brain tumors were isolated and quantitative polymerase chain reaction were performed on the xenograft tumors and in parallel on archival patient tumor specimens.
Results
The relative tumor-to-brain (T/B) ratio of SUV max was significantly lower after one week (123 ± 6%, n = 7 vs. 147 ± 6%, n = 7; p = 0.018) and after two weeks (142 ± 8%, n = 5 vs. 204 ± 27%, n = 4; p = 0.047) in the CPT-11 group compared with the control group. Strong negative correlations between SUV max T/B ratio and LAT1 (r = -0.62, p = 0.04) and LAT2 (r = -0.67, p = 0.02) were observed. In addition, a strong positive correlation between LAT1 and Ki67 was detected in xenografts. Furthermore, a 1.6 fold higher expression of LAT1 and a 23 fold higher expression of LAT2 were observed in patient specimens compared to xenografts. Conclusions: 18F-FET MicroPET can be used to detect a treatment response to CPT-11 in GBM xenografts. The strong negative correlation between SUV max T/B ratio and LAT1/LAT2 indicates an export transport function. We suggest that 18F-FET PET may be used for detection of early treatment response in patients.
