Quantitatively Resolving Ligand-Receptor Bonds on Cell Surfaces Using Force-Induced Remnant Magnetization Spectroscopy

利用力诱导剩余磁化谱定量解析细胞表面的配体-受体键

阅读:10
作者:Yi-Ting Chen, Andrew C Jamison, T Randall Lee, Shoujun Xu

Abstract

Molecule-specific noncovalent bonding on cell surfaces is the foundation for cellular recognition and functioning. A major challenge in probing these bonds is to resolve the specific bonds quantitatively and efficiently from the nonspecific interactions in a complex environment. Using force-induced remnant magnetization spectroscopy (FIRMS), we were able to resolve quantitatively three different interactions for magnetic beads bearing anti-CD4 antibodies with CD4(+) T cell surfaces based upon their binding forces. The binding force of the CD4 antibody-antigen bonds was determined to be 75 ± 3 pN. For comparison, the same bonds were also studied on a functionalized substrate surface, and the binding force was determined to be 90 ± 6 pN. The 15 pN difference revealed by high-resolution FIRMS illustrates the significant impact of the bonding environment. Because the force difference was unaffected by the cell number or the receptor density on the substrate, we attributed it to the possible conformational or local environmental differences of the CD4 antigens between the cell surface and substrate surface. Our results show that the high force resolution and detection efficiency afforded by FIRMS are valuable for studying protein-protein interactions on cell surfaces.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。