Alpha-synuclein-induced stress sensitivity renders the Parkinson's disease brain susceptible to neurodegeneration

突触核蛋白诱导的应激敏感性使帕金森病患者的大脑易受神经退行性病变的影响

阅读:2
作者:Modestos Nakos Bimpos, Katerina Karali, Christine Antoniou, Dionysios Palermos, Maria Fouka, Anastasios Delis, Iason Tzieras, George Panagiotis Chrousos, Yassemi Koutmani, Leonidas Stefanis, Alexia Polissidis

Abstract

A link between chronic stress and Parkinson's disease (PD) pathogenesis is emerging. Ample evidence demonstrates that the presynaptic neuronal protein alpha-synuclein (asyn) is closely tied to PD pathogenesis. However, it is not known whether stress system dysfunction is present in PD, if asyn is involved, and if, together, they contribute to neurodegeneration. To address these questions, we assess stress axis function in transgenic rats overexpressing full-length wildtype human asyn (asyn BAC rats) and perform multi-level stress and PD phenotyping following chronic corticosterone administration. Stress signaling, namely corticotropin-releasing factor, glucocorticoid and mineralocorticoid receptor gene expression, is also examined in post-mortem PD patient brains. Overexpression of human wildtype asyn leads to HPA axis dysregulation in rats, while chronic corticosterone administration significantly aggravates nigrostriatal degeneration, serine129 phosphorylated asyn (pS129) expression and neuroinflammation, leading to phenoconversion from a prodromal to an overt motor PD phenotype. Interestingly, chronic corticosterone in asyn BAC rats induces a robust, twofold increase in pS129 expression in the hypothalamus, the master regulator of the stress response, while the hippocampus, both a regulator and a target of the stress response, also demonstrates elevated pS129 asyn levels and altered markers of stress signalling. Finally, defective hippocampal stress signalling is mirrored in human PD brains and correlates with asyn expression levels. Taken together, our results link brain stress system dysregulation with asyn and provide evidence that elevated circulating glucocorticoids can contribute to asyn-induced neurodegeneration, ultimately triggering phenoconversion from prodromal to overt PD.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。