Extension domain of amyloid processor protein inhibits amyloidogenic cleavage and balances neural activity in a traumatic brain injury mouse model

淀粉样蛋白处理器的延伸域可抑制淀粉样变性裂解并平衡创伤性脑损伤小鼠模型中的神经活动

阅读:7
作者:Zhenxing Xie, Tianyu Li, Wei Su, Yanyun Lou, Yongsheng Zhang, Xiyuan Zhou, Zhanfei Li, Xiangjun Bai, Xinghua Liu

Background

Mechanisms underlying cognitive dysfunction following traumatic brain injury (TBI) partially due to abnormal amyloid processor protein (APP) cleavage and neural hyperactivity. Binding of the extension domain of APP (ExD17) to the GABAbR1 receptor

Conclusions

ExD17 treatment results in a reduction of amyloidogenic APP cleavage and neuroexcitotoxicity, ultimately leading to an improvement in the behavioral deficits observed in TBI mice.

Methods

Stretch-induced injury was utilized to establish a cell injury model in HT22 cells. The TBI model was created by striking the exposed brain tissue with a free-falling weight. Topical or intraperitoneal administration of ExD17 was performed. Cell viability was assessed through a cell counting kit-8 assay, while intracellular Ca2+ was measured using Fluo-4. Western blotting was used to investigate the expression of APP amyloidogenic cleavage proteins, GABAbR1, phospholipase C (PLC), PLCB3, and synaptic proteins. ELISA was performed to analyze the levels of Aβ42. Seizures were assessed using electroencephalography (EEG). Behaviors were evaluated through the novel object recognition test, open field test, elevated plus maze test, and nest-building test.

Results

ExD17 improved cell viability and reduced intracellular calcium in the cell injury model. The treatment also suppressed the increased expression of APP amyloidogenic cleavage proteins and Aβ42 in both cell injury and TBI models. ExD17 treatment reversed the abnormal expression of GABAbR1, GRIA2, p-PLCG1/PLCG1 ratio, and p-PLCB3/PLCB3 ratio. In addition, ExD17 treatment reduced neural activity, seizure events, and their duration in TBI. Intraperitoneal injection of ExD17 improved behavioral outcomes in the TBI mouse model. Conclusions: ExD17 treatment results in a reduction of amyloidogenic APP cleavage and neuroexcitotoxicity, ultimately leading to an improvement in the behavioral deficits observed in TBI mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。