Human umbilical cord derived mesenchymal stem cells overexpressing HO-1 attenuate neural injury and enhance functional recovery by inhibiting inflammation in stroke mice

过表达 HO-1 的人类脐带间充质干细胞通过抑制中风小鼠的炎症来减轻神经损伤并促进功能恢复

阅读:6
作者:Yu Yang, Qianqian Liu, Song Deng, Qian Shao, Long Peng, Yuejuan Ling, Yue Huang, Siqi Zheng, Qiaoji Jiang, Dekang Nie, Jian Chen

Aims

The current evidence demonstrates that mesenchymal stem cells (MSCs) hold therapeutic potential for ischemic stroke. However, it remains unclear how changes in the secretion of MSC cytokines following the overexpression of heme oxygenase-1 (HO-1) impact excessive inflammatory activation in a mouse ischemic stroke model. This study investigated this aspect and provided further insights.

Conclusion

The findings indicate that MSCs overexpressing HO-1 exhibited significant therapeutic effects against hyper-inflammatory injury after stroke in mice, ultimately promoting recovery after ischemic stroke.

Methods

The middle cerebral artery occlusion (MCAO) mouse model was established, and subsequent injections of MSC, MSCHO-1 , or PBS solutions of equal volume were administered via the mice's tail vein. Histopathological analysis was conducted on Days 3 and 28 post-MCAO to observe morphological changes in brain slices. mRNA expression levels of various factors, including IL-1β, IL-6, IL-17, TNF-α, IL-1Ra, IL-4, IL-10, TGF-β, were quantified. The effects of MSCHO-1 treatment on neurons, microglia, and astrocytes were observed using immunofluorescence after transplantation. The polarization direction of macrophages/microglia was also detected using flow cytometry.

Results

The results showed that the expression of anti-inflammatory factors in the MSCHO-1 group increased while that of pro-inflammatory factors decreased. Small animal fluorescence studies and immunofluorescence assays showed that the homing function of MSCsHO-1 was unaffected, leading to a substantial accumulation of MSCsHO-1 in the cerebral ischemic region within 24 h. Neurons were less damaged, activation and proliferation of microglia were reduced, and polarization of microglia to the M2 type increased after MSCHO-1 transplantation. Furthermore, after transplantation of MSCsHO-1 , the mortality of mice decreased, and motor function improved significantly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。