MicroRNA-based promotion of human neuronal differentiation and subtype specification

基于microRNA促进人类神经元分化和亚型规范

阅读:6
作者:Laura Stappert, Lodovica Borghese, Beate Roese-Koerner, Sandra Weinhold, Philipp Koch, Stefanie Terstegge, Markus Uhrberg, Peter Wernet, Oliver Brüstle

Abstract

MicroRNAs are key regulators of neural cell proliferation, differentiation and fate choice. Due to the limited access to human primary neural tissue, the role of microRNAs in human neuronal differentiation remains largely unknown. Here, we use a population of long-term self-renewing neuroepithelial-like stem cells (lt-NES cells) derived from human embryonic stem cells to study the expression and function of microRNAs at early stages of human neural stem cell differentiation and neuronal lineage decision. Based on microRNA expression profiling followed by gain- and loss-of-function analyses in lt-NES cells and their neuronal progeny, we demonstrate that miR-153, miR-324-5p/3p and miR-181a/a contribute to the shift of lt-NES cells from self-renewal to neuronal differentiation. We further show that miR-125b and miR-181a specifically promote the generation of neurons of dopaminergic fate, whereas miR-181a inhibits the development of this neurotransmitter subtype. Our data demonstrate that time-controlled modulation of specific microRNA activities not only regulates human neural stem cell self-renewal and differentiation but also contributes to the development of defined neuronal subtypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。