Tumor suppressor schwannomin/merlin is critical for the organization of Schwann cell contacts in peripheral nerves

肿瘤抑制因子施万诺明/梅林对于周围神经中施万细胞接触的组织至关重要

阅读:8
作者:Natalia Denisenko, Carmen Cifuentes-Diaz, Theano Irinopoulou, Michèle Carnaud, Evelyne Benoit, Michiko Niwa-Kawakita, Fabrice Chareyre, Marco Giovannini, Jean-Antoine Girault, Laurence Goutebroze

Abstract

Schwannomin/merlin is the product of a tumor suppressor gene mutated in neurofibromatosis type 2 (NF2). Although the consequences of NF2 mutations on Schwann cell proliferation are well established, the physiological role of schwannomin in differentiated cells is not known. To unravel this role, we studied peripheral nerves in mice overexpressing in Schwann cells schwannomin with a deletion occurring in NF2 patients (P0-SCH-Delta39-121) or a C-terminal deletion. The myelin sheath and nodes of Ranvier were essentially preserved in both lines. In contrast, the ultrastructural and molecular organization of contacts between Schwann cells and axons in paranodal and juxtaparanodal regions were altered, with irregular juxtaposition of normal and abnormal areas of contact. Similar but more severe alterations were observed in mice with conditional deletion of the Nf2 gene in Schwann cells. The number of Schmidt-Lanterman incisures, which are cytoplasmic channels interrupting the compact myelin and characterized by distinct autotypic contacts, was increased in the three mutant lines. P0-SCH-Delta39-121 and conditionally deleted mice displayed exuberant wrapping of nonmyelinated fibers and short internodes, an abnormality possibly related to altered control of Schwann cell proliferation. In support of this hypothesis, Schwann cell number was increased along fibers before myelination in P0-SCH-Delta39-121 mice but not in those with C-terminal deletion. Schwann cell numbers were also more numerous in mice with conditional deletion. Thus, schwannomin plays an important role in the control of Schwann cell number and is necessary for the correct organization and regulation of axoglial heterotypic and glio-glial autotypic contacts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。