Macrophage expression of E3 ubiquitin ligase Grail protects mice from lipopolysaccharide-induced hyperinflammation and organ injury

E3泛素连接酶Grail的巨噬细胞表达保护小鼠免受脂多糖诱导的过度炎症和器官损伤

阅读:7
作者:Chih-Chin Shih, Pei-Yao Liu, Jye-Hann Chen, Mei-Hui Liao, Chih-Ming Hsieh, Shuk-Man Ka, Chin-Chen Wu, Hui-Tsu Lin, Ti-Hui Wu, Ying-Chuan Chen

Abstract

Multiple organ dysfunction caused by hyperinflammation remains the major cause of mortality during sepsis. Excessive M1-macrophage activation leads to systemic inflammatory responses. Gene related to anergy in lymphocytes (Grail) is regarded as an important regulator of T cells that functions by diminishing cytokine production. However, its role in regulating macrophage activation and organ injury during sepsis remains unclear. Our aim was to examine the effects of Grail on macrophage reactivity and organ injury in endotoxemic animals. Wild-type and Grail knockout mice were injected with vehicle or Escherichia coli lipopolysaccharide and observed for 24 h. Changes in blood pressure, heart rate, blood glucose, and biochemical variables were then examined. Moreover, levels of neutrophil infiltration, MMP-9, and caspase 3 were analyzed in the lungs of animals. The expression of pro-inflammatory cytokines in J774A, RAW264.7, and primary peritoneal macrophages stimulated with LPS were also assessed in the presence or absence of Grail. Results indicated that loss of Grail expression enhances the induction of pro-inflammatory cytokines in J774A, RAW264.7, and primary peritoneal macrophages treated with LPS. Furthermore, LPS-induced macrophage hyperactivation was alleviated by ectopic Grail overexpression. In vivo studies showed that Grail deficiency exacerbates organ damage in endotoxemic animals. Levels of neutrophil infiltration, MMP-9, and caspase 3 were significantly increased in the lungs of Grail-deficient endotoxemic mice. Thus, these results suggest that Grail contributes to the attenuation of hyperinflammation caused by activated macrophages and prevents organ damage in endotoxemic mice. We suggest that Grail signaling could be a therapeutic target for endotoxemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。