Conditioned taste aversion memory extinction temporally induces insular cortical BDNF release and inhibits neuronal apoptosis

条件性味觉厌恶记忆消退暂时诱导岛叶皮质 BDNF 释放并抑制神经元凋亡

阅读:8
作者:Dian-Wei Liu #, Ling Ma #, Xu-Hua Zhang, Yun-Yan Wang

Background

Memory extinction has been reported to be related to psychiatric disorders, such as post-traumatic stress disorder (PTSD). Secretion and synthesis of brain-derived neurotrophic factor (BDNF) have been shown to temporally regulate various memory processes via activation of tropomyosin-related kinase B (TrkB) receptors. However, whether memory extinction induces the synthesis and secretion of BDNF on the basis of its localization is not understood. In this study, we

Conclusion

These results demonstrate that CTA memory extinction temporally induces the release and synthesis of BDNF in the IC and inhibits neuronal apoptosis.

Methods

Rats were subjected to CTA memory extinction and BDNF antibody (or the equal volume of vehicle) was microinjected into the IC immediately after the extinction testing. Real-time polymerase chain reaction and in situ hybridization were used to detect the gene expression of BDNF, NGF and NT4. The protein levels of BDNF were determined through the enzyme-linked immunosorbent assay. In addition, the levels of phosphorylated TrkB normalized to total TrkB were evaluated using immunoprecipitation and immunoblotting. c-Fos, total extracellular signal-regulated kinase (Erk), phosphorylated Erk, and apoptosis-related protein (caspase-3), were detected by Western blotting.

Results

We found that blocking BDNF signaling within the IC disrupts CTA extinction, suggesting that BDNF signaling in the IC is necessary for CTA extinction. Increased expression levels of c-Fos indicate the induced neuronal activity in the IC during CTA extinction. In addition, temporal changes in the gene expression and protein levels of BDNF in the IC were noted during extinction. Moreover, we found that phosphorylation of TrkB increased prior to the enhanced BDNF expression, suggesting that CTA extinction induces rapid activity-dependent BDNF secretion in the IC. Finally, we found decreased expression of caspase-3 in the IC after CTA extinction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。