Effects of Ethyl Pyruvate on Bile Duct Ligation-Induced Liver Fibrosis by Regulating Nrf2 Pathway and Proinflammatory Cytokines in Rats

丙酮酸乙酯通过调控Nrf2通路和促炎细胞因子对大鼠胆管结扎诱发肝纤维化的影响

阅读:6
作者:Yonghua Zong #, Mingxiao Zhang #, Shuai Li, Wenqian Qi, Juan Li, Tonghua Liu, Huijun Yang, Chen Lu, Xiaosong Hu

Aim

The aim of this paper is to investigate the effects of ethyl pyruvate (EP) on experimental liver fibrosis induced by bile duct ligation (BDL) and explore the underlying molecular mechanisms. Material and method: Rats were randomly divided into three groups: the sham group, the BDL group, and the BDL+EP group. Liver fibrosis was induced by common bile duct ligation and was evaluated by serum biochemical parameter levels, Masson's trichrome staining, α-SMA expression, and collagen I deposition. The levels of Nrf2 signaling pathway-related antioxidant genes (Nrf2, SOD2, NQO1, and GSH-Px) in liver tissues were also measured. Meanwhile, the mRNA expression levels of HMGB1, IL-1β, TNF-α, and HSP27 were analyzed. In BDL-induced liver fibrosis rats, the successfully established model was confirmed by the significant increase of serum ALT and AST levels, the high liver fibrosis score, α-SMA expression, and collagen deposition.

Conclusions

The results suggested that EP administration could effectively inhibit the liver fibrosis induced by BDL in rat, which may be associated with the enhanced activity of Nrf2 to mediate antioxidant enzyme system and downregulate the inflammatory genes.

Results

Compared with the BDL group, EP administration could diminish fibrosis level and substantially increase the expression of Nrf2 signaling pathway-related antioxidant genes. Furthermore, EP significantly suppressed the mRNA expression levels of HMGB1, IL-1β, TNF-α, and HSP27. Conclusions: The results suggested that EP administration could effectively inhibit the liver fibrosis induced by BDL in rat, which may be associated with the enhanced activity of Nrf2 to mediate antioxidant enzyme system and downregulate the inflammatory genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。